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ABSTRACT: We get one theorem that there exist solutions for the fourth order semi-
linear elliptic Dirichlet boundary value problem with fully nonlinear term. We prove this
result by the critical point theory and the variation of linking method.
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1. INTRODUCTION

Let © be a bounded domain in R™ with smooth boundary 99 and let b € R be a con-
stant. Let \g(k =1,2,---) denote the eigenvalues and ¢x(k = 1,2, - - -) the corresponding
eigenfunctions, suitably normalized with respect to L?(€) inner product, of the eigenvalue
problem Au + Au = 0 in  with u = 0 on 0f), where each eigenvalue \; is repeated as
often as its multiplicity. We recall that A\ < Ay < A3 < -+ — 400, and that ¢;(z) > 0
for z € Q.

We investigate the existence of the nontrivial solutions for the following fourth order

semilinear elliptic equation with fully nonlinear term
A+ cAu+bu™ = w")? = (u)®  in Q, (1.1)
u =0, Au=0 on 0f),
where ¢ € R and ™ = max{u, 0}.

Jung and Choi [5] investigated, by a linking argument, the existence and the multiplicity
of the solutions for the following fourth order semilinear elliptic equation with Dirichlet
boundary condition

A*u+cAu=b((u+1)"—1)  inQ, (1.2)
u =0, Au=0 on 01},
where ¢ € R and u™ = max{u, 0}.
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Tarantello [8] studied problem (1.2) when ¢ < A; and b > A\ (A — ¢). She showed
that (1.2) has at least two solutions, one of which is a negative solution. She obtained
this result by the degree theory. Micheletti and Pistoia [7] also proved that if ¢ < A;
and b > Aa(A2 — ¢), then (1.2) has at least three solutions by the Leray-Schauder degree
theory. Choi and Jung [2] showed that the problem

A*u+ cAu=bu" +s in Q, (1.3)
u =0, Au=0 on 900
has at least two nontrivial solutions when ¢ < Ay, Aj(A1 — ¢) < b < Aa2(A2 — ¢) and, s < 0
or when \; < ¢ < A2, b < A(A\; —¢) and s > 0. The authors obtained these results by
using the variational reduction method. The authors [4] also proved that when ¢ < Ay,
MM —¢) <b < X(M2—c) and s < 0, (1.2) has at least three nontrivial solutions by
using degree theory.

The eigenvalue problem A2y + cAu = pu in Q with u = 0, Au = 0 on 09 has also
infinitely many eigenvalues p, = A\p(M\x — ¢), k > 1 and corresponding eigenfunctions ¢y,
k > 1. We note that A\ (A —¢) < Xda(Aa —¢) < A3(Ag—¢) <---.

We suppose that Ay < Ay < A3... — 400, and that Ay < ¢ < A3. Then

MM =) <A(ha—c) <0< Ag( N3 —¢) < -

Jung and Choi [5] showed that: (i) Let Ay < ¢ < A1 and MM —¢) < 0, b <
Me+1(Ak+1 — ¢). Then (1.2) has a unique solution.

(ii) Let M\ < ¢ < Agg1 and Ag(Ap —¢) <0 < Agr1(Mpr1 — €) < -+ < Mprn(Apan — €) < b <
Metns1(Aktns1 — €)y k> 1, n > 1. Then (1.2) has at least two nontrivial solutions.

In section 2, we introduce the Hilbert space and prove (P.S.)%- condition for the energy

functional. In section 3, we state the main theorem and prove it by using the critical

point theory and variation of linking method.

2. EIGENSPACE AND (P.S.)- CONDITION
Let H be a subspace of L*(€)) defined by
H={ueL*Q)] Y M — )b} < oo},
where u = 3 hyty, € L*(Q) with > h2 < oo. Then this is a complete normed space with
a norm
lall = [ k(e = )12
Since A\, (A\x — ¢) = 400 and c¢ is fixed, we have

(i) A%u+ cAu € H implies u € H.
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(ii) [Jull = Cllul|z2(q), for some C' > 0.
(iii) |Ju|lr2(q) = 0 if and only if [lu|| = 0.

For the proof of the above results we refer [1].

LEMMA 2.1.  Assume that c is not an eigenvalue of —A, b # \y(\p —c). Ifu € L*(Q)
and (u™)? — (u™)® € L*(Q), then all solutions of

A%u+cAu+but = (u")? — (u”)? in L*Q)
belong to H.
Proof.  Let w € L*(Q) and (u")?* — (u™)® € L*(Q). Then bu®™ € L*) and we put
—bum + (uh)? = (u)? =" hioy € LA(Q).

w=(A? 4 cA) " (—but + (uF)? - =y el hmk € L*(Q).

. 1 2 2 2
Jull = Z | Ae(Ak — C)|mhk < CZh = Cllullzz@) < o0
for some C' > 0. Thus u € H. "
With the aid of Lemma 2.1 it is enough that we investigate the existence of the solutions
of (1.1) in the subspace H of L*((2).
Assume that £ > 1 and A\, < ¢ < Agg1. We denote by (A );>1 the sequence of the

negative eigenvalues of A% 4+ cA, by (A;);>1 the sequence of the positive ones, so that
Ay =x(M—c) < <Al =M —0) <0

< AT = M1 (Mer1 =€) AT = Ao (M2 — €) < -

We consider an orthonormal system of eigenfunctions {e; i > 1} associated with

the eigenvalues {A;, A, i > 1}. We set

131,

H™ = closure of span{eigenfunctions with eigenvalue > 0},

H™ = closure of span{eigenfunctions with eigenvalue < 0}.

We define the linear projections P~ : H — H-,PT: H — H™.
We also introduce two linear operators R: H — H*,S: H — H™ by

S(u) = Z R(u

o0

=1

(o9} o0
,_E:—— §:++
u = a; e, + a;e;.

i=1 i=1

It is clear that S and R are compact and self adjoint on H.

if
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DErINITION 2.1.  Let I, : H — R be defined by
1 L.~ b
Bw) = HIP*l? = S0Pl + S|P~ [ Fluyds
Q
where A = R+ S and F(s) = [} f(z,7)dr, f(z,7) = (77)* = (77)%.
It is straightforward that
VIy(u) = PTu— P u+ bA(Au)" — Af(Au).

Following the idea of Hofer [3] one can show that

PROPOSITION 2.2. I, € CYY(H,R). Moreover VIy(u) = 0 if and only if w =
(R + S)(u) is a weak solution of (P), that is,

/(w(vﬁ, + Vpgaa) + b[w] T v)dadt = / f(w)vdxdt for all smooth v € H.
o 0

In this section, we suppose b > 0. Under this assumption, we have a concern with
multiplicity of solutions of equation (1.1). Here we suppose that f is defined by equation
fla,7) = ()" = (17)%.

In the following, we consider the following sequence of subspaces of L?(RY) :
Hy, = (@?:1[{1\;) o (@?:1]{1\;)
where H) is the eigenspace associated to A and H,- = ¢ if i > k.

LEMMA 2.5.  The functional I, satisfies (P.S.)5 condition, with respect to (H,), for
all ~.

Proof. Let (k,) be any sequence in N with k, — oo. And let (u,) be any sequence in
H such that u, € H, for all n, I(u,) — v and V(I}) |g, (u,) — 0.
First, we prove that (u,) is bounded. By contradiction let ¢, = ||u,|| — oo and set

Uy, = Uy /t,. Up to a subsequence u,, — u in H for some @ in H. Moreover

2
0 = < V() (un), tin > = I(un)

n

= 2 [ Plawde — - [ f(Au) Augda

n JQ n J

= [ G AT+ G () T

Since t, — oo, (Au,)" — 0 and (Au,)” — 0. This implies At = 0 and @ = 0, a
contradiction.

So (uy) is bounded and we can suppose u,, — u for some v € H. We know that

V(L) u,, (Un) = Pty — P7u, + bA(Au,) ™ — Af(Auy,).
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Since A is the compact operator, P™u, — P~u,, converges strongly, hence u,, — u strongly
and VI(u) = 0. "

3. AN APPLICATION OF LINKING THEORY

Fixed A; and A; < —b < A7 ;. We prove the Theorem via a linking argument.
First of all, we introduce a suitable splitting of the space H. Let

Z) = ee;?‘;MHA;,ZQ =H,- Zs= @iz IHA_ G HT,
where HA; =¢ifj>k.
LEMMA 3.1.  There exists R such that sup,cz, ez, oj=r 1o(v) < 0.
Proof. Ifve Zy % Zs then
o) = =gl + SIS - [ F(so)de

Since

SIS = [ Psoye = [ 21507 - 3507 - 1050l

there exists R such that 2||[Sv]||> — [, F(Sv)dz < 0 for all ||v|| = R. Hence

Iy(v) < *5”””2 <0

LEMMA 3.2.  There exists p such that inf,c 7,02, |ju|=p [o(u) > 0.

Proof. Let o € [0,1]. We consider the functional I, : Zo @& Z3 — R defined by
1 1 b
Lo(u) = S| PYull® = 5| Pul® + S| [Au)*|* - 0/ F(Au)dz.
2 2 2 o
We claim that there exists a ball B, = {u € Z, ® Zs||ju|| < p} such that

(1) I, are continuous with respect to o,
(2) Iy, satisfies (P.S) condition,
()

)

(4) 0 1is the unique critical point of I, in B,

0 is a minimum for Iy in B,

Then by a continuation argument of Li-Szulkin’s [6], it can be shown that 0 is a local
minimum for I| TowsZs = Ip; and Lemma is proved.
The continuity in o and the fact that 0 is a local minimum for I,y are straightforward.

To prove (P.S.) condition one can argue as in the previous Lemma, when dealing with I,

187
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To prove that 0 is isolated we argue by contradiction and suppose that there exists
a sequence (oy,) in [0,1] and sequence (u,) in Zy @ Zs such that VI, (u,) = 0 for all
n,u, # 0,andu, — 0. Set t, = ||u,| and w, = wu,/t, then ¢, — 0. Let v,, = P, and
W, = PTu,. Since v, varies in a finite dimensional space, we can suppose that v, — ©
for some 0. We get
On

(1) tivjb’”(u") = Wy, — Up + ;A(Aunﬁ - t—Af(Aun) =0.

n n n

Multiplying by w0, yields

N / f(Au,) A, dx — b / (Au,)™ A, da.
tn Ja tn Jo
We know that

/(Aun)+A'u5nd;L' = /P+(Aun)+A'L[nd;L'
Q Q

I

/u P (Au,)* (Ad,) " da.

Since b > 0, there exists a sequence (e,) such that e, — 0 and 0 < ¢, < b for all n. That

is
tﬁ /S2 (Aup)* Atdpdz > z—" /&2 Pt (Auy)* (Ady) " da.

Then

IN

(A

1 / F(Aw,) Ardndr — / P (Au,)* (Ad,)*d
t’ﬂ Q t Q

n

IN

/ VA g 4 ., [ 1P i) i)

Since A is a compact operator

f(Aun)| = [{([tnAuin] )P~ = ([tnAtin] ")7 '}
<t [Add, TP A 0 [Add,] !
< (M A+ 6, M)

for some M; and My where m = min{p — 1,q — 1} and M = max{p — 1,q — 1}. We get
that

Auy, . - 5
Q n Q

Hence

(2) [ l[* < o(1) +6n/gIP+(A1fn)+|I(A1fn)+|dx~
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Since [, |P*(Ati,)"||(Aty,) " |dz is bounded and equation (7) holds for every ,, w, — 0
and so (u,) converges. Since |f(Au,)| < t,"(M; + t,™=™M,), we get

On 1 m— —-m
T f(Aun)| < —1F (Aun)| < "My + 8N M) < 0(1).

Then $2Af (Au,) — 0. From equation (6), (v,) converges to zero, but this is impossible

i | ()| = L. .

We give the definitions for the next step:

DEFINITION 3.3. Let H be an Hilbert space, Y C H, p>0ande € H\Y, e # 0.
Set:

B,(Y) {z e Y[zl < p},
{r e Y |zl = p},

DyleY) = {oetv|o>0,0eY.]oetol <p),

Sp(Y)

Sp(eY) = foetvloz0veY floeto|=ptU{v|veY, v <p}

THEOREM 3.4. If A < =b(i = 1,2,---,k) then problem (1.1) has at least one

nontrivial solution.

Proof. Let e € Zs. By Lemma 3.1 and Lemma 3.2, for a suitable large R and a suitable

small p, we have the linking inequality
(3) sup Ib(ZR(e, Zl)) < inf ]b(Sp(Zz (&) Z3))
Moreover (P.S.); holds. By standard linking arguments, it follows that there exists a

critical point u for I, with o < I(u) < 3, where a = inf [,(S,(Z, & Z3)) and § =
sup Iy(Arg(e, Z1)). Since a > 0, then u # 0. .

We assume in this section that ¢ > 2 and we set
W1 = EB?O:?HAJ—, W2 = @;;llHA;’ W3 = H+.

Notice that W1 = Z1 @ Z2 and WQ D W3 = Z3

LEMMA 3.5.  liminf)y) - ocuewramw, fo(u) < 0.
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Proof. Let (un), be a sequence in Wy @ Ws such that ||u,|| — co. We set ¢, = |Ju,|| and

tn = Uy, /t,. Since S is a compact operator,

é||[5un]+||2 _ /F(Sun)dx

2 2 2
= [ 3 W (S — 1 (9 Y
Q2" p " q "
— —0Q.
Then
Ib(un)_ 1 b|l[Sun]+||2 /F(Sun) )
=273 2 e T
Hence

lim inf Iy(u) <0.
[|ull—=+o0,ucW1&W2

LEMMA 3.6.  There exists p such that inf I,(S;(Wa & W3)) > 0.
Proof. Repeating the same arguments used in Lemma 3.2, we get the conclusion. "
THEOREM 3.7.  Leti > 2. If A; < —b then problem (1) has at least two nontrivial
solution.

Proof.  Using the conclusion of Theorem 3.4, we have that there exist a nontrivial critical

point u with
Iy(u) < sup Iy(Ar(e, Z1))

where e, R were given in Lemma 3.1 and 3.2. We can choose that R > R. Take any € in

W5, then we have a second linking inequality,
sup Iy(S (6, Wh)) < inf I,(S;(W2 & Ws)).
Since (P.S.)% holds, there exists a critical point @ such that
inf I,(S,(Wa © W3)) < I(a) < sup I(Ax(é, Wh)).
Since R > R and 7@ Zy = Wi,
ARg(e, Z1) C Ba(Wh) C Bp(é, Wh).

Then

=
<

S—
A

sup I(Agr(e, Z1))

IN

sup Ib(ER(é, Wl)) < inf Ib(S,;(Wg (&%) W3)) < Ib(&)
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Hence u # . "

ACKNOWLEDGEMENT

This work(Tacksun Jung) was supported by Basic Science Research Program through
the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT
and Future Planning (KRF-2017R1A2B4005883).

REFERENCES

[1] Choi, Q. H., Jung, T., Multiplicity of solutions and source terms in a fourth
order nonlinear elliptic equation, Acta Mathematica Scientia, 19, No. 4, 361-374
(1999).

[2] Choi, Q. H., Jung, T., Multiplicity results on nonlinear biharmonic operator,
Rocky Mountain J. Math. 29, No. 1, 141-164 (1999).

[3] Hofer, H. |, On strongly indefinite functionals with applications, Trans. Amer.
Math. Soc. 275, 185-214(1983).

[4] Jung, T. S., Choi, Q. H., Multiplicity results on a nonlinear biharmonic equa-
tion, Nonlinear Analysis, Theory, Methods and Applications, 30, No. 8, 5083-5092
(1997).

[5] Jung, T. S., Choi, Q. H., A Variation of Linking for the Semilinear Biharmonic
Problem , Preprint.

[6] Li, S., Squlkin, A. Periodic solutions of an asymptotically linear wave equation,
Nonlinear Analysis, 1, 211-230(1993).

[7] Micheletti, A. M., Pistoia, A., 1t Multiplicity results for a fourth-order semi-
linear elliptic problem, Nonlinear Analysis, TMA, 31, No. 7, 895-908 (1998).

[8] Tarantello, A note on a semilinear elliptic problem, Diff. Integ. Equat., 5, No.
3, 561-565 (1992).

191





